

1

DEVELOPMENT AND PERFORMANCE OF CAMEL_AERO, A TRULY MATRIX-FREE,
PARALLEL AND VECTORIZED UNSTRUCTURED FINITE VOLUME SOLVER FOR

COMPRESSIBLE FLOWS

Shuangzhang Tu*, Marvin Watts, Andrew Fuller, Reena Patel, and Shahrouz Aliabadi

Northrop Grumman Center at Jackson State University, Jackson, MS 39204, USA

ABSTRACT

This paper reports the development and performance

of CaMEL_Aero, our truly matrix-free, parallel and
vectorized unstructured finite volume solver for
compressible flows. The Jacobian-free GMRES method is
used to solve the linear systems of equations inside each
nonlinear Newton-Raphson iteration. Furthermore, the
matrix-free Lower-Upper Symmetric Gauss Seidel (LU-
SGS) method is employed as a preconditioning technique
to the GMRES solver. The solver is parallelized using
mesh partitioning and Message Passing Interface (MPI)
functions. The solver is also vectorized using two main
vectorization techniques: the face coloring algorithm to
vectorize the long loops over faces and the truncated
Neumann expansions of the inverse of preconditioning
matrices to vectorize the LU-SGS preconditioner,
respectively. A few 2D and 3D numerical examples are
presented to demonstrate the performance of the present
solver.

1. INTRODUCTION

We have developed a cell-centered finite volume

(FV) solver named CaMEL_Aero for high-speed
compressible flows. The goal of this solver is to solve
practical aerodynamic problems arising from aerospace
and automotive industries in an accurate, efficient and
robust way.

In CaMEL_Aero, implicit time integration is adopted

to obtain better efficiency, especially for high Reynolds
number flows. The implicit time integration results in a
large nonlinear system of equations for complex 3D
applications. The Newton-Raphson iterative method is
used to solve this nonlinear system. Inside each Newton-
Raphson nonlinear iteration, a large, sparse and usually
ill-conditioned linear system must be solved. The
Generalized Minimal RESidual (GMRES) solver (Saad
1996) has been widely used in solving large sparse linear
systems. The GMRES solver involves only matrix-vector
multiplication, thus a Jacobian-free (Knoll and Keyes
2004) implementation is possible. Like other iterative
methods, the performance of the GMRES solver is highly

related to the preconditioning. Though the GMRES solver
itself can be matrix-free (i.e. Jacobian-free), the
preconditioning technique is usually not matrix-free. A
matrix-free preconditioning approach was introduced
(Luo, Baum et al. 1998) for the GMRES solver. In that
approach, the Jacobian obtained from the low-order
dissipative flux function is used to precondition the
Jacobian matrix obtained from higher-order flux
functions. Using the approximate Lower Upper-
Symmetric Gauss-Seidel (LU-SGS) factorization of the
preconditioning matrix, their preconditioning is truly
matrix-free. We combine the Jacobian-free GMRES
solver and the matrix-free LU-SGS solver in
CaMEL_Aero in a massively distributed memory
environment.

Parallel computing becomes indispensable for large-

scale simulations. If the parallel computer is also
equipped with multi-streaming and vector processors, the
process of simulating large-scale problems will be further
accelerated. The Cray X1E is such a supercomputer built
using a hybrid parallel, vector, and multi-streaming
design. Codes running on the Cray X1E must be fully
vectorized for best performance. In CaMEL_Aero, two
main subroutines need to be vectorized. Both subroutines
are called extensively by the Jacobian-free GMRES
solver and consume the vast majority of the total
computational time. One subroutine is about a long loop
over faces. In our approach, we separate all faces into
groups according to the so-called “face coloring”
algorithm (Tu, Aliabadi et al. 2005b). Another subroutine
is about the LU-SGS preconditioning. Because this
preconditioning is based on the LU approximate
factorization, to avoid the sequential computations in
solving the triangular system and make vectorization
possible, we apply the approximate truncated Neumann
expansions of the inverse of the triangular matrices (Benzi
and Tuma 1999).

The purpose of this paper is to report the

development and performance of CaMEL_Aero. In
Section 2, we will briefly review some key ingredients of
the development of CaMEL_Aero. Section 3 provides a
detailed description of the vectorization techniques. In
Section 4, we will present several 2D and 3D numerical
examples to demonstrate the performance of the solver.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 NOV 2006

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Development And Performance Of Camel_Aero, A Truly Matrix-Free,
Parallel And Vectorized Unstructured Finite Volume Solver For
Compressible Flows

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Northrop Grumman Center at Jackson State University, Jackson, MS
39204, USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002075., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2. NUMERICAL METHOD

2

Following the standard finite volume discretization

(hybrid tetrahedral, pyramidic, prismatic and hexahedral
cells allowed) and using the implicit backward Euler
formula (BDF) for the time integration, we can obtain the
following discrete form of the compressible Navier-
Stokes equations for each cell i

1 1

11 0 1 ()
n n n

n

t

α α α+ −
+−+ +

+
Δ

U U U
R U 0= (1)

with

1

1() ()k
ki

s
=

= ⋅
Ω ∑R U H n

fn

Δ (2)

Here H includes both inviscid and viscous fluxes, n
is the outward unit normal vector of the faces surrounding
cell i and Ωi is the volume of cell i. fn is the number of
faces of the cell and is the area of kth face of cell i.

, and for first order time
accurate scheme (BDF1). , and

 for second order time accurate scheme
(BDF2).

sΔ
1 1.0α = 0 1.0α =− 1 0.0α− =

1 1.5α = 0 2.0α =−

1 0.5α− =

Remarks.

 The spatial accuracy of the present solver is

second-order based on linear reconstruction.
 The inviscid flux across the interface is

computed through the HLLC (Harten, Lax et al.
1983; Toro 1999) flux function or the modified
Steger-Warming (Scalabrin and Boyd 2005) flux
function.

 The solution gradient across the cell interface is
computed via the directional derivative method
for viscous fluxes (Mathur and Murphy 1997).

 The one-equation Spalart-Allmaras Detached
Eddy Simulation (SA-DES) (Nikitin, Nicoud et
al. 2000) turbulence model is used to compute
the turbulent eddy viscosity.

2.1 Jacobian-free GMRES solver

We can use G(U) to stand for the left hand side of

Eq. (1), i.e. . The standard Newton-Raphson
iterative method is used to solve this non-linear system,
leading to

() 0=G U

 (3) ()δ =−J U G U

where J is the Jacobian matrix and can be computed via

 1 1α α∂ ∂
≡ = + = +

∂ Δ ∂ Δ
G RJ I
U Ut t

I J

ε

 (4)

where denotes the contribution to J from the spatial
flux terms and I is the identity matrix.

J

Inside each non-linear Newton-Raphson iteration, a

linear system described as Eq. (3) must be solved. This
usually huge, sparse and ill-conditioned linear system is
solved by the Generalized Minimal RESidual method
(GMRES) (Saad 1996). Because the Krylov space based
algorithm involves only matrix-vector multiplication, it is
unnecessary to form the Jacobian matrix explicitly. We
are able to approximate the matrix-vector product using
(Knoll and Keyes 2004)

 (5) [() ()] /ε≈ + −Jv R U v R U

where R is evaluated according to Eq. (2). Only the
spatial contribution in Eq. (4) needs this approximation
because the time-dependent term can be evaluated
exactly. In Eq. (5), the choice of is a balance between
the approximation accuracy and the floating point
rounding error. This approximation has the following
advantages: (i) avoid the difficulty and cost in forming the
Jacobian matrix; and (ii) save a significant amount of
memory for storing the Jacobian matrix.

J

ε

2.2 Matrix-free LU-SGS preconditioning

In CaMEL_Aero, we adopt the Lower-Upper

Symmetric Gauss Seidel (LU-SGS) method (Luo, Baum
et al. 1998) as a preconditioning technique. The Jacobian
matrix of the low-order dissipative flux function can be
trivially obtained and is more diagonally dominant and
more compact than the high-order Jacobian matrix.
Therefore, the low-order Jacobian matrix is a good
candidate as preconditioner to the high-order Jacobian
matrix. We use the simplest and most dissipative flux
function, the local Lax-Friedrich (LF) flux to establish the
preconditioning matrix. The local LF flux normal to the
cell interface can be expressed as

 1 *1 [() () ()]
2LF i j j iλ− ⎧ ⎫⎪ ⎪⎪ ⎪= + − −⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

F T F TU F TU TU TU (6)

where i and j are the indices of the left and right adjacent
cells of the face, respectively, T is the orthonormal
rotation matrix of the face, and represents the largest
wave speed in the direction normal to the interface (Tu,
Aliabadi et al. 2005a).

*λ

The Jacobian matrix of the flux function described as

Eq. (6) can be conveniently separated into block diagonal

part, lower block triangular part and upper block
triangular part (Luo, Baum et al. 1998; Sharov, Luo et al.
2000), i.e.

3

U (7) J D Llow = + +

where the subscript ‘low’ indicates that the Jacobian
matrix comes from the low-order dissipative flux
function. Assuming that j < i in Eq. (6), we obtain the L
operator for cell i contributed by cell j

 1 *()1
2 ()

j

ij

i j

sλ−
⎡ ⎤∂⎢= −⎢Ω ∂⎢ ⎥⎣ ⎦

F TU
L T I

TU
⎥Δ⎥ T (8)

If j > i in Eq. (6), then the U operator is obtained. The
diagonal block for row i of can be expressed as lowJ

 *1

1

1
2

fn

i
ki

s
t

α
λ

=

⎛ ⎞⎟⎜ ⎟⎜= + Δ ⎟⎜ ⎟⎟⎜Δ Ω⎝ ⎠
∑D k k I

)

ε

=

 (9)

which can be represented by a single scalar for each cell.
Note that the time dependent term is included in D.

The preconditioning matrix is taken as the

approximate Lower Upper-Symmetric Gauss-Seidel (LU-
SGS) factorization of , namely, J low

 (10) 1() (P D L D D U−= + +

By applying the right-preconditioning to the
Jacobian-free GMRES solver, we obtain the new form of
Eq. (5).

 (11) 1 1[() ()] /ε− −≈ + −JP v R U P v R U

It has to be stressed that the function R in Eqs. (2),
(5) and (11) is evaluated following the second order
reconstruction procedure. Before Eq. (11) can be
implemented, must be solved first. This can be
done by solving

1v P v−=

 (12) #Pv v=

for . Substituting Eq. (10) into Eq. (12) yields #v

 (13) 1 #() ()D L D D U v v−+ +

which can be solved in two steps in which the block
forward sweep

 *()D L v v+ = (14)

is followed by the block backward sweep

 . (15) #()D U v Dv+ = *

0
T

ρ

ερ

In Eqs. (14) and (15), the L and U operators are
computed when needed, thus completely eliminating the
need to store the preconditioning matrix. In the parallel
version, the LU-SGS preconditioning is implemented
locally on each processor to avoid inter-processor
communications. Numerical experience shows that this
approximation still yields satisfactory convergence
performance.

2.3 A simple slope limiting procedure

The linear reconstruction of a component of the

primitive vector q, denoted by q, can be expressed for cell
0 as

 (16) 0
R
k kq q qφ= + Δ ∇r

where is the reconstructed solution at the center of the
kth face of cell 0, is the solution at the cell center,

 is the distance vector between the face center and the
cell center, is the unlimited gradient vector that is
computed according to the Gauss theorem and is the
slope limiting factor.

R
kq

0q

kΔr

0q∇
φ

The slope limiter is employed to suppress unphysical

overshoots/undershoots. We have employed an effective
slope limiter for triangular and tetrahedral meshes in (Tu
and Aliabadi 2005a; Tu, Aliabadi et al. 2005c). We found
that simple extension of that limiter to other types of
meshes will introduce excessive dissipation. Therefore,
we design a new limiter that is simple, effective and
suitable for any types of cells. The limiting procedure
ensures that no new extrema are allowed during
reconstruction.

For compressible flows, density ρ is used to compute

the slope limiter. All components of the primitive vector q
use this same limiter. We first compute the allowable
density variation in each cell via

 (17) max max

min min

max(,)

min(,)

c c
o o

c c
o o

ρ ρ ρ ε

ρ ρ ρ

Δ = −

Δ = − −

where and are the maximum and minimum
density around the cell, respectively. The beauty of the
above formulation is that they allow some small amount

max
cρ min

cρ

4

4−

ρ

of numerical noise by adjusting positive parameter ε. This
is important because we do not want the limiter to be
active in regions where the solution is smooth with
negligible numerical noise. Numerical experiences show
that is sufficient to suppress unphysical
overshoots/undershoots while not affecting the residual
convergence too much. Also, note that the computed

 and are always positive and negative,
respectively. We then calculate the unlimited variation of
density at each vertex i of cell 0 using the unlimited
density gradient .

310 10ε −= −

max
cρΔ minρΔ c

0ρ∇

 (18) 0
v T
i iρΔ =Δ ∇r

We compare each with and . The
limiting factor is to limit to be within the range
defined by and . It can be expressed as

v
iρΔ max

cρΔ min
cρΔ

v
iρΔ

max
cρΔ min

cρΔ

max
max

min
min

if

if

1 otherwise

c
v c
iv

i

c
v c

i v
i

ρ
ρ ρ

ρ

ρ
φ

ρ

⎧⎪Δ⎪ Δ >Δ⎪⎪ Δ⎪⎪⎪⎪Δ⎪⎪= Δ⎨⎪ Δ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iρ ρ<Δ

1

 (19)

As can be seen, . The final limiter for the
cell is obtained by taking the minimum value of φ , i.e.

.

0 iφ< ≤

i

min()i
i

φ φ=

3. PARALLELIZATION AND VECTORIZATION

CaMEL_Aero was first parallelized on the Cray T3E-

1200 using the ParMETIS mesh partitioning (Karypis and
Kumar 1998) and the MPI parallel programming module.
We have communications requirement for vertices, faces
and cells on the partition boundaries. The inter-processor
gather/scatter communications subroutines for faces and
cells are written directly based on those for nodes which
has been extensively used in our finite element solvers
(Aliabadi and Tezduyar 1993; Aliabadi and Tezduyar
2000). Very efficient non-blocking (MPI) functions are
called to set up the inter-processor “gather” and “scatter”
routines in the pre-processing stage. The resultant parallel
scalability performance is excellent.

CaMEL_Aero has also been fully vectorized (Tu,

Aliabadi et al. 2005b) on the Cray X1
parallel/vector/multi-streaming architecture. Inside each
multistreaming processor (MSP), the compiler will try to
multi-stream and vectorize each loop. For the loop to be

successfully vectorized by the compiler, the loop must be
free of any of the following: data dependencies, memory
contention, I/O statements, non-inlined calls to
subroutines and functions. The very useful compiler
option “-rm” can be used to prompt the compiler to
generate a .lst file for each source file. The .lst file
reports the multi-steaming and vectorization status of
each loop in the source file. If the loop is fully multi-
streamed and vectorized, each line of the loop will be
marked with “MV” at the beginning of that line.

In CaMEL_Aero, a face-based loop is used to

compute the fluxes across each face. The result is then
scattered to the two adjacent cells of the face. The “add”
operation assembles the global cell-based vector
composed of the residual. Therefore, the Cray X1E
compiler will not vectorize loops like this by default
because of these memory scatter statements, and if we
force the compiler to vectorize the loop, it is possible that
two faces access the same cell simultaneously causing
memory contention. Another situation that prohibits
vectorization is the matrix-free LU-SGS preconditioner.
The LU-SGS preconditioner involves solving two block
triangular linear equation systems which require
sequential operations. Note that the face loop and the LU-
SGS preconditioner are extensively called by the GMRES
solver. These two situations consume the vast majority of
the total computational time. Therefore, the vectorization
of these two situations is crucial to achieve the optimal
performance of the code on the Cray X1E.

3.1 Vectorization of face loops using face grouping

To vectorize the face loops, we divide the faces into

groups. Inside each group, no two faces share the same
adjacent cell. Thus, the memory contention problem can
be avoided. The face grouping can also be designated as
face-coloring scheme which is similar to the element-
coloring scheme used in vectorizing the node-based finite
element solvers (Johnson 2003; Aliabadi, Johnson et al.
2004). This grouping process is done in the pre-
processing stage. With this algorithm, face groups are
created to contain as many faces as possible. Once the
faces are grouped, we will modify the face loop to contain
an outer group loop and an inter face loop. Since we have
guaranteed that there will be no memory contention inside
each face group, we can force the vectorization of the
inner face loop by applying the “CONCURRENT”
compiler directive. The pseudo code of the new face loop
is shown below:

DO IG = 1, NGF
! NGF is the number of face groups.

IFACE_BEG = FGROUP(IG)
IFACE_END = FGROUP(IG+1) - 1

!DIR$ CONCURRENT
DO IFACE = IFACE_BEG, IFACE_END
 IE1 = IFE(1,IFACE)
 IE2 = IFE(2,IFACE)
 ...
 ...! perform flux computations.
 ...
 ...! scattered to adjacent cells.
ENDDO

ENDDO

5

For pure tetrahedral meshes, the face coloring

algorithm will divide all faces into about 7 groups on each
processor. The left panel in Fig. 1 shows the grouping
statistics on a typical processor for a tetrahedral mesh
containing 3,652,436 cells and 7,347,956 faces and
partitioned by 24 processors. The right panel in Fig. 1
shows the grouping statistics information on a typical
processor about a pure hexahedral mesh containing
40,151,112 hexahedra and 120,604,576 faces. 64
processors are used to partition this mesh. On each
processor the faces are divided into 8-9 groups. As can be
seen from Fig. 1, on average, the majority of the groups
contain a large number of faces with one or two smaller
groups for the remainder of faces. The number of faces in
each group determines the “vector length” for the face
loops. With the full vectorization of the face loops, very
high-sustained performance can be achieved.

Fig. 1: Typical face grouping statistics. Left: a pure

tetrahedral mesh with ne = 3,652,436 and nproc = 24.
Right: a pure hexahedral mesh. ne = 40,151,112 and

nproc = 64.

3.2 Vectorization of the LU-SGS preconditioner

To vectorize the LU-SGS preconditioner, we apply

the truncated Neumann expansions of the inverse of
triangular matrices (Benzi and Tuma 1999). For example,
the Neumann expansion of the inverse of the lower
triangular matrix is given by

 (20)
1

1

0

() (1)
n

k k

k

−
−

=

+ = −∑I L L

With the truncated Neumann expansions, the
sequential computations needed to solve the triangular
system exactly can be reduced to a finite number of
matrix-vector multiplications, i.e. the L operator in Eq.

(20). To utilize Eq. (20), we must rewrite the
preconditioning matrix given by Eq. (10) as:

 (21) ˆ() (P I L D I U= + + ˆ)

with 1L̂ LD−= and . 1Û D U−=

Correspondingly, the forward sweep and the

backward sweep become

 *ˆ()I L v v+ = (22)

and

 (23) # 1ˆ()I U v D v−+ = *

respectively. Recall that the diagonal matrix D is a scalar
constant for each cell, thus producing no difficulty in the
vectorization. If the first two terms of the Neumann
expansion are kept, then can be computed via *v

 (24)
*

1

ˆ

()
v v Lv

v L D v−

= −

= −

Similar expressions can be obtained for .
Obviously, the vectorization can be easily achieved using
Eq. (24). Numerical experiments show that keeping the
first two terms of the Neumann expansion is sufficient to
yield satisfactory convergence. The outcome of the
vectorization is that the solver is roughly 50 times faster
on the Cray X1 than on the Cray T3E (Tu, Aliabadi et al.
2005b).

#v

4. PERFORMANCE ANALYSIS

4.1 Slope limiter performance

Here we use a simple oblique shock reflection

problem (, shock angle of 29) to test the
limiter performance. The computational domain is a

2.9M∞ =

4 1× rectangle. Fig. 2(a-c) shows the pressure
distribution at horizontal cut y = 0.5 compared with exact
solution. Fig. 2(d) shows the convergence histories with
different limiter parameter values. The effect of in Eq.
(17) can be clearly seen. When , the
overshoots/undershoots around the shocks have been
completely suppressed while the convergence of residual
is only slightly affected.

ε
410ε −=

 (a) no limiter. (b) . 210ε −=

 (c) . (d) Convergence history. 410ε −=

Fig. 2: Performance of the limiter. Pressure at y = 0.5 (a-
c) and convergence history (d) for Shock reflect problem.

4.2 Performance for flows at various Mach numbers

We first present the solution of a low subsonic

() inviscid flow around a cylinder. At this
Mach number, the flow can be assumed incompressible
and analytical solution is available for the pressure and
velocity distributions on the cylinder surface. As can be
seen in

0.1M∞ =

Fig. 3, the pressure contours exhibit a nearly
perfect symmetry that is true for inviscid incompressible
flows. The pressure and velocity distributions agree very
well with analytical solutions except that the vertical
velocity component shows some discrepancy at the rear
half of the cylinder surface.

6

(a) Pressure contours.

(b) Pressure on the surface.

(c) u-component on the surface.

(d) v-component on the surface.

Fig. 3: Solutions of low subsonic (M = 0.1) flow around a
circular cylinder.

Fig. 4 shows the solution of an inviscid hypersonic
flow () passing around a blunted body. To
avoid the carbuncle problem, we choose the modified
Steger-Warming scheme (Scalabrin and Boyd 2005) in
simulating such supersonic blunted body problems. No
carbuncle phenomenon can be seen in

15M∞ =

Fig. 4 and the
predicted pressure jump across the normal shock agrees
very well with the theoretical value.

(a) Pressure field. (b) Pressure distribution.

Fig. 4: Solution of hypersonic flow (M = 15) around a
blunted body.

4.3 Parallel scalability

We run a test case of about 36 million hybrid

prsim/tetrahedron cells on the linux cluster JVN located in
Army Research Laboratory (ARL). The case was run
using 16, 32, 64, 128, 256 and 512 processors. Another
case is a tetrahedral grid of 17 million elements. This case
was run on Cray X1E using 8, 32, and 64 processors. The
speedup vs. number of processors is shown in Fig. 5. As
can be seen, CaMEL_Aero exhibits excellent scalability.

(a) on JVN linux cluster.

0.0

1.0

2.0
3.0

4.0

5.0

6.0

7.0
8.0

9.0

10.0

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
No. of Processors

Sp
ee

d
U

p

(b) on Cray X1E.

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450 500 550 600

Number of processors

Sp
ee

d-
up

present scalability
exact linearity

Fig. 5: Scalability performance of CaMEL_Aero.

4.4 Accuracy in predicting aerodynamic forces

The first case is a laminar subsonic flow at 0.5M∞ =

and Re 5000= around the NACA0012 airfoil. The
computational mesh contains 15649 hybrid
triangular/quadrilateral cells. Fig 6(a) and (b) are the drag
and lift convergence histories, respectively. Fig 6(c) and
(d) show the pressure and friction coefficients distribution
on the airfoil surface. Table 1 lists the computed drag and
lift coefficients with and without slope limiting. The
results agree well with results in the literature. It can be

seen that slope limiting slightly increase the force
coefficients but does not degrade the accuracy.

(a) Drag convergence history.

(b) Lift convergence history.

(c) Friction coefficient

distribution.

(d) Pressure coefficient

distribution.

Fig 6: Solution of subsonic laminar flow (M = 0.5, Re =
5000, AoA =) around NACA0012 airfoil. 0

Table 1: Computed Force Coefficients of Subsonic
Laminar Flow around the NACA0012 Airfoil.

Dc Lc

no limiter
limiter,

 0.01ε= no limiter
limiter,

 0.01ε=
Due to
pressure 0.02321007 0.02315961 0.00019712 0.00022851

Due to
friction 0.03216580 0.03228044 0.00000164 0.00000183

Total 0.05537587 0.05544005 0.00019876 0.00023034

7

For turbulent flows, the Spalart-Allmaras Detached

Eddy Simulation (SA-DES) turbulence model is
employed to compute the eddy viscosity. The distance to
the closest wall is computed with the help from
KDTREE2 (Kennel 2004), a freely available software to
efficiently search the nearest neighbors. We follow the
guideline in (Lin, Percival et al. 1995) to generate the
high aspect ratio cells near the body. The first layer
thickness is a function of the Reynolds number, i.e.

 (25) * 0.90.172 Rey y+ =

where is the non-dimensional first layer thickness next
to the body. is assumed in the first layer during the
mesh generation stage.

*y

1y+ ≈

Fig. 7 shows the eddy viscosity field of a low

subsonic flow passing around the NACA0015 airfoil. The
flight conditions are , and
AoA). The eddy viscosity at the rear part of the top

surface of the airfoil is essential for the correct prediction
of the aerodynamic drag and lift.

0.1235M∞ = 6Re 1.5 10= ×

12=

Fig. 7: Eddy viscosity field of a low subsonic flow around

NACA0015 airfoil (,). 0.1235M∞ = 6Re 1.5 10= ×

We also run a simulation about a supersonic flow
passing around a spinning bullet. The flight conditions are

2.7M∞ = and . The mesh contains about
40,151,112 unstructured hexahedral cells.

5Re 9.71 10= ×
Fig. 8 shows

the Mach number field. The base area is highly turbulent.
The computed drag agrees favorably with the
experimental data of 0.279.

Fig. 8: Mach number field of supersonic flow around a

spinning bullet (,). 2.7M∞ = 5Re 9.71 10= ×

4.5 Speed analysis

The speed of the CaMEL_Aero is measured using a
time-scale defined as: cT

 proc

c

elem ts it k

n
T

n n n n
= runT (26)

where procn , , , , and are the numbers of
processors, elements, time steps, nonlinear iterations
within each timestep, size of Krylov space, respectively,
and is the CPU time. For the CaMEL_Aero flow
solver, the typical speed for an all-tet mesh simulation is
about 1.0E-6 second on the Cray X1E for solving Navier-
Stokes equation and 3.4E-7 second for the turbulence
equation. The speed for all-hex meshes is about 1.3 times
that of all-tet meshes. The speed of solving turbulence
equations is roughly one third of that of solving the
Navier-Stokes equations, though the SA-DES turbulence
equation contains only one unknown while the Navier-

elemn tsn itn kn

runT

8

Stokes equations contain 5 unknowns. This can be
attributed to the vast indirect addressing using
unstructured data structures.

4.6 Memory requirement

The base memory (excluding krylov vectors)

requirement is between 1.15-1.41 kbytes/element
(considering 1 mbytes = 1048576 byte) depending on the
mesh types; obviously, an all-hex mesh consumes more
memory than an all-tet mesh on the element basis. The
Krylov vector memory use is exactly 40
bytes/elment/krylov (since we have 5 unknowns each
element), regardless of element type. Since DES is
decoupled from the Navier-Stokes equations, the Krylov
vector space can be reused for the turbulence equation.

CONCLUSIONS

In this paper, we first describe some key ingredients

in developing CaMEL_Aero, an unstructured finite
volume solver for compressible flows. The focus is put on
the Jacobian-free GMRES solver and the matrix-free LU-
SGS preconditioning technique. We also present our
implementation of a simple slope limiting procedure
which is suitable for arbitrarily unstructured meshes. We
then discuss the parallelization and vectorization of the
solver on parallel and vector computer platforms. The
emphasis is put on the vectorization of face loops and the
LU-SGS preconditioner. Finally, we analyze the
performance of CaMEL_Aero through a few numerical
examples. The performance shows that CaMEL_Aero is
an accurate, efficient and robust numerical tool in
compressible flow simulations.

ACKNOWLEDGMENTS

This work is funded by the Army High Performance

Computing Research Center (AHPCRC) under the
auspices of the Department of the Army, Army Research
Laboratory contract numbers DAAD19-01-2-0014 and
DAAD19-03-D-0001.

REFERENCES

Aliabadi, S., Johnson, A. et al., 2004: Simulation of contaminant
dispersion on the Cray X1: verification and
implementation. Journal of Aerospace Computing,
Information and Communication 1(8): 341-361.

Aliabadi, S. and Tezduyar, T., 1993: Space-time finite element
computation of compressible flows involving moving
boundaries and iinterfaces." Computer Methods in Applied
Mechanics and Engineering 107: 209-223.

Aliabadi, S. and Tezduyar, T., 2000: Stabilized-finite-
element/interface-capturing technique for parallel
computation of unsteady flows with interfaces. Computer

Methods for Applied Mechanics and Engineering 190: 243-
261.

Benzi, M. and Tuma, M., 1999: A comparative study of sparse
approximate inverse preconditioner. Applied Numerical
Mathematics 30: 305-340.

Harten, A., Lax, P. et al., 1983: On upstream differencing and
Godunov-type schemes for hyperbolic conservation laws.
SIAM Review 25: 35-61.

Johnson, A., 2003: Computational fluid dynamics applications
on the Cray X1 architecture: experiences, algorithms, and
performance analysis. Cray User Group Conference 2003
Proceedings.

Karypis, G. and Kumar, V., 1998: Metis 4.0: unstructured graph
partitioning and sparse matrix ordering systems. Technical
report, University of Minnesota.

Kennel, M. B., 2004: KDTREE2: Fortran 95 and C++ software
to efficiently search for near neighbors in a multi-
dimensional Euclidean space,
http://arxiv.org/PS_cache/physics/pdf/0408/0408067.pdf.

Knoll, D. and Keyes, D., 2004: Jacobian-free Newton-Krylov
methods: a survey of approaches and applications. Journal
of Computational Physics 193: 357-397.

Lin, C.-W., Percival, S. et al., 1995: Viscous drag calculations
for ship hull geometry. Technical report. Bethesda,
Mariland, Carderock Division Naval Surface Warfare
Center.

Luo, H., Baum, J. et al., 1998: A fast matrix-free implicit
method for compressible flows on unstructured grids.
Journal of Computational Physics 146: 664-690.

Mathur, S. R. and Murphy, J. Y., 1997: A pressure-based
method for unstructured meshes. Numerical Heat Transfer,
Part B 31: 195-215.

Nikitin, N. V., Nicoud, F. et al., 2000: An approach to wall
modeling in large-eddy simulations. Physics of Fluids
12(7): 1629-1632.

Saad, Y., 1996: Iterative methods for sparse linear systems,
PWS Publishing Company.

Scalabrin, L. C. and Boyd, I. D., 2005: Development of an
unstructured Navier-Stokes solver for hyperbolic
nonequilibrium aerothermodynamics. 38th AIAA
Thermophysics Conference. Canada, AIAA paper 2005-
5203.

Sharov, D., Luo, H. et al., 2000: Implementation of unstructured
grid GMRES+LU-SGS method on shared-memory cache-
based parallel computers, AIAA paper 2000-0927.

Toro, E., 1999: Riemann solvers and numerical methods for
fluid dynamics. New York, Springer.

Tu, S. and Aliabadi, S., 2005a: A slope limiting procedure in
discontinuous Galerkin finite element method for
gasdynamics applications. International Journal of
Numerical Analysis and Modeling 2(2): 163-178.

Tu, S., Aliabadi, S. et al., 2005b: High performance computation
of compressible flows on the Cray X1. Proceedings of the
Second International Conference on Computational
Ballistics, Cordoba, Spain.

Tu, S., Aliabadi, S. et al., 2005c: A robust parallel implicit finite
volume solver for high-speed compressible flows. 43rd
AIAA Aerospace Sciences Meeting and Exhibit. Reno,
Nevada, AIAA paper 2005-1396.

	ABSTRACT
	1. INTRODUCTION
	2. NUMERICAL METHOD
	2.1 Jacobian-free GMRES solver
	2.2 Matrix-free LU-SGS preconditioning
	2.3 A simple slope limiting procedure
	3. PARALLELIZATION AND VECTORIZATION
	3.1 Vectorization of face loops using face grouping
	3.2 Vectorization of the LU-SGS preconditioner

	4. PERFORMANCE ANALYSIS
	4.1 Slope limiter performance
	4.2 Performance for flows at various Mach numbers
	4.3 Parallel scalability
	4.4 Accuracy in predicting aerodynamic forces
	4.5 Speed analysis
	4.6 Memory requirement

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

